

25–26 March 2014 | The Woodlands, Texas, USA

SPE 168278-MS Optimizing Horizontal Wellbore Design to Extend Reach with Coiled Tubing

J. Forrester, Athabasca Oil Corporation, J. Yeung, F. Marzara, Essential Energy Services

Introduction

- What?
 - How can wellbore designs be altered to maximize coil tubing reach capacity?
 - Concentrate on key wellbore variables that effect coil tubing lockup depths
 - Maintain a set of control variables
 - Compare field data to model results
 - Provide a set of recommendations for drilling of wells
- Why?
 - Allow for wellbore cleanouts post frac
 - Allow all frac stages to be stimulated
 - Prevent sterilizing production and reserves due to inability to reach TD

CONFERENCE & EXHIBITION 2016 2014

Background

- Area of interest:
 - Western Canada, Montney Formation
- Investigation drivers:
 - CT annular frac design
 - Wellbore interventions
- General:

ନ IIIFI I INT

2014

- Wellbore lengths
- # of stimulations
- Trends

1. Canadian Discovery, Western Canadian Frac Database

SPE 168278-MS• Optimizing Horizontal Wellbore Design to Extend Reach with Coiled Tubing• Jeff Forrester

Horizontal Wellbore Design Factors

- Build Rate
 - Expected to have largest impact
- Turn Rate
 - Multi-well pad applications
- Casing Size

2014

- Cost
- Artificial Lift

Horizontal Wellbore Design

Limiting Factors

- **Directional tools** •
- Geology ٠
- Surface access •
- Stimulation System ٠
- Economics •

JBING & WELL INTERVEN

2014

Fox Creek, Alberta

Coil Tubing Model Design

Manipulated Variables

- Build Rate
 - 0 20 ° / 30 m
- Turn Rate
 - 0-6°/30 m
 - 'Build and turn'
- Casing Size
 - 114 mm
 - 139 mm
 - 139 mm w/ 114 mm lateral

CONFERENCE & EXHIBITION

Coil Tubing Model Assumptions

Variable	Assumed Value		Justification	
Coil tubing OD	50.8 mm	2″	Match field data	
			Common size	
			Annular velocity limits	
TVD	2000 m	6561 ft	Match field data	
Friction Coefficient	0.3		Conservative value used	
Lateral	Smooth / Flat		Impractical to model random variations	
Fluid	Fresh Water		Match field data	
Reference Point	8 degrees / 30 m		Match field data	

COILED TUBING & WELL INTERVENTION CONFERENCE & EXHIBITION

2014

Results - Build Angle

COILED TUBING & WELL INTERVENTION

2014

Note: Y-axis depicts percentage change in lateral length relative to an 8° /30m build rate

SPE 168278-MS• Optimizing Horizontal Wellbore Design to Extend Reach with Coiled Tubing• Jeff Forrester

Results – Turn Angle

Results – Casing Size

Change in Percent Lateral (%) vs Build Angles (114 mm casing)

Change in Percent Lateral (%) vs Build Angles (139 mm casing)

Results – Sinusoidal and Helical Buckling

Matching Field Data

Variable	Effects	
Lubrication Additives	Friction Coef.	
Wellbore DLS	Wellbore comparison Coil behavior	
Fluid Types	Friction coef. Buoyancy	
Wellbore Pressures	Coil behavior	
Debris	Coil behavior Drag	

COLLED TUBING & WELL INTERVENTION CONFERENCE & EXHIBITION 2014

Debris sample, stage tool millout.

SPE 168278-MS• Optimizing Horizontal Wellbore Design to Extend Reach with Coiled Tubing• Jeff Forrester

Quantifying Model to Field Data

- 30 well data set
- Compare matched friction coefficient
- Large variety of well types
- Casing size ignored (proven to be lower impact variable)
- Build to 45 turn @ 4 ° /30m shown to be lowest average friction coefficient

Average build (degrees / 30m)	Build- Land	Build- land- turn	Build to 45 deg - start turn
4	-	-	0.150
5	0.300	-	0.247
6	0.300	0.270	0.263
7	0.300	0.213	0.260
8	0.300	-	0.225

DILED TUBING & WELL INTERVENTION ONFERENCE & EXHIBITION 2014

Conclusions

Thank You / Questions

Acknowledgements

- 1. Essential Energy Services
- 2. Athabasca Oil Corp.
- 3. Joe Fisher, Newsco Energy Services
- 4. Jeff Liu, Trican Well Services

