SPE 168278-MS
 Optimizing Horizontal Wellbore Design to Extend Reach with Coiled Tubing

J. Forrester, Athabasca Oil Corporation, J. Yeung, F. Marzara, Essential Energy Services

Introduction

- What?
- How can wellbore designs be altered to maximize coil tubing reach capacity?
- Concentrate on key wellbore variables that effect coil tubing lockup depths
- Maintain a set of control variables
- Compare field data to model results
- Provide a set of recommendations for drilling of wells
- Why?
- Allow for wellbore cleanouts post frac
- Allow all frac stages to be stimulated
- Prevent sterilizing production and reserves due to inability to reach TD

Background

- Area of interest:
- Western Canada, Montney Formation
- Investigation drivers:
- CT annular frac design
- Wellbore interventions
- General:
- Wellbore lengths
- \# of stimulations
- Trends

Western Canada - Horizontal Well Statistics1

1. Canadian Discovery, Western Canadian Frac Database

Horizontal Wellbore Design Factors

- Build Rate
- Expected to have largest impact
- Turn Rate
- Multi-well pad applications
- Casing Size
- Cost
- Artificial Lift

Horizontal Wellbore Design

Limiting Factors

- Directional tools
- Geology
- Surface access
- Stimulation System
- Economics

Fox Creek, Alberta

2014

Coil Tubing Model Design

Manipulated Variables

- Build Rate
- $\mathbf{0 - 2 0} 0^{\circ} / \mathbf{3 0} \mathbf{m}$
- Turn Rate
- $0-6^{\circ} / 30 \mathrm{~m}$
- 'Build and turn'

- Casing Size
- 114 mm
- 139 mm
- 139 mm w/ 114 mm lateral

Coil Tubing Model Assumptions

\(\left.$$
\begin{array}{|lccc|}\hline \text { Variable } & \text { Assumed Value } & \text { Justification } \\
\hline \text { Coil tubing OD } & 50.8 \mathrm{~mm} & 2^{\prime \prime} & \begin{array}{c}\text { Match field data } \\
\text { Common size } \\
\text { Annular velocity limits }\end{array}
$$

\hline TVD \& 2000 \mathrm{~m} \& 6561 \mathrm{ft} \& Match field data

\hline Friction Coefficient \& 0.3 \& Conservative value used

\hline Lateral \& Smooth / Flat \& Impractical to model random

variations\end{array}\right]\)| Fresh Water |
| :--- |

Results - Build Angle

coleg tubng f well intevenion COMfEREOCE \& EKHIBITIO

Note: Y-axis depicts percentage change in lateral length relative to an $8^{\circ} / 30 \mathrm{~m}$ build rate

Results - Turn Angle

COOfEREOCE \& EKHIBITION

Results - Casing Size

Change in Percent Lateral (\%) vs Build Angles (114 mm casing)

Change in Percent Lateral (\%) vs Build Angles (139 mm casing)

Results - Sinusoidal and Helical Buckling

Sinusoidal Bucking and Helical Buckling (114 mm casing)

* 0 degree turn $(\operatorname{Sin}) ~ 2$ degree turn (sin)
$\longleftarrow 4$ degree turn $(\sin) ~ \longleftarrow 6$ degree turn (\sin)
\cdots turn (sin)

COILED TUBING \& WELL ITTERVEATION

conference o ehtibition

Matching Field Data

Quantifying Model to Field Data

- 30 well data set
- Compare matched friction coefficient
- Large variety of well types
- Casing size ignored (proven to be lower impact variable)
- Build to 45 - turn @ $4^{\circ} / 30 \mathrm{~m}$

Average build (degrees $/ 30 \mathrm{~m})$	Build- Land	Build- land- turn	Build to 45 deg - start turn
$\mathbf{4}$	-	-	0.150
$\mathbf{5}$	0.300	-	0.247
$\mathbf{6}$	0.300	0.270	0.263
$\mathbf{7}$	0.300	0.213	0.260
$\mathbf{8}$	0.300	-	0.225

Conclusions

Build rates of $4^{\circ} / 30 \mathrm{~m}$

Turn rates of $2-3^{\circ} / 30 \mathrm{~m}$ 'Build and turn'

114 mm monobore design

2014

Thank You / Questions

Acknowledgements

1. Essential Energy Services
2. Athabasca Oil Corp.
3. Joe Fisher, Newsco Energy Services
4. Jeff Liu, Trican Well Services
